Neuroscience: Past, Present, and Future

Introduction

- Neuroscience is a term that largely arose during the formation of the Society for Neuroscience in 1970
- Neuroscience is interdisciplinary and draws from medicine, biology, psychology, physics, chemistry, mathematics, and computer science
- Neuroscience focuses on understanding how the nervous system works and requires knowledge about many things

Origins of Neuroscience

Prehistoric and Ancient Egypt

- Trepanation (boring holes in the skulls) is documented as early as 7000 years ago (about 5000 BC)
- Symptoms of brain damage were noted in ancient Egypt about 3000 BC; however, the heart was considered to be the seat of the soul and the repository of memories

Ancient Greece

- Hippocrates (460-379 BC) stated that the brain is involved in sensation and is the seat of intelligence
- Aristotle (384-322 BC) stated that the heart is the center of intelligence, and that the brain cools the blood

Roman Empire

- Galen (130-200 AD) was very involved with dissections and proposed that:
 - The soft cerebrum is the recipient of sensations
 - The less soft cerebellum controls muscles
 - \circ $\,$ The ventricles contain humors that move to and from the brain through hollow nerves

Renaissance to 19th Century

- Vesalius (1514-1564) provided additional detail of brain structure but stated that the ventricles were the location of brain function (like Galen).
- Descartes (1596-1650) was the chief advocate for the fluid-mechanical view of brain function:
 - Hollow nerves from the eyes project to the brain ventricles and valves control the movement of animal spirits through nerves that inflate the muscles
 - However, Descartes proposed that although the brain controlled behavior that is beast-like, uniquely human behaviors were controlled by the "mind."

- Others on the 17th and 18th century began to look at the substance of the brain leading to descriptions of:
 - The central nervous system, including gray matter, white matter, gyri, sulci, fissures, lobes:
 - The spinal cord including horns, columns, and roots
 - The peripheral nervous system and nerves

Nineteenth Century views of the Brain

- Brain injury can disrupt sensations, movement and thought
- The brain communicates with the body via nerves
- The brain has different identifiable parts which likely perform different functions
- The brain operates as a machine

Nerves as wires

- Benjamin Franklin (1751) heralded a new understanding of electricity
- Luigi Galvani and Emil du Bois-Reymond (≈1800) showed that muscles can be caused to contract when nerves are stimulated electrically; and that the brain itself generates electricity.
- These observations gave rise to the new concept that nerves are wires that conduct signals to and from the brain.
- Charles Bell and Francois Magendie (≈1810) showed that cutting only the ventral roots of the spinal cord caused muscle paralysis; and that cutting only the dorsal roots blocked sensory information from getting into the spinal cord.

Localization of Specific Functions

- Charles Bell (1811) proposed that the origin of motor fibers is the cerebellum and that the destination of sensory fibers is the cerebrum (like Galen).
- Marie-Jean-Pierre Flourens (1823) used ablation methods in birds and found support for Bell's proposal.
- Franz Joseph Gall (1809) was convinced that bumps on the skull correlated with differences in brain function and behavior
- Paul Broca (1861) described a patient who could listen to and understand language, but could not speak; upon autopsy the patient had a lesion in the left frontal lobe. Other patients provided supporting evidence for Broca's area and its role in speech production.

The Neuron

- Theodore Schwann (1839) proposed the cell theory, where all tissues are composed of cells.
- Although there was considerable debate whether nerves cells were the basic unit of the brain, by 1900 the neuron was recognized to be basic functional unit of the nervous system.

Neuroscience Today

Levels of Analysis

Molecular Neuroscience

- Is concerned with molecules of the nervous system that include:
 - Chemical messengers that allow neurons to communicate with each other.
 - Transport proteins that control what substances can enter or leave neurons
 - Nerve growth factors

Cellular Neuroscience

- Is concerned with how molecules work together to give neurons their special properties.
- Study differences in function of different types of neurons.
- Asks questions such as how do neurons influence other neurons, become wired together, and perform calculations?

Systems Neuroscience

- Focuses on the assemblies of neurons that form complex circuits to perform a common function.
- Asks questions such as how do circuits analyze sensory information, form perceptions, make decisions and execute movements?

Behavioral Neuroscience

- Asks questions such as how do neural systems work together to produce integrated behavior?
 - o Are different types of memories accounted for by different systems?
 - Where is the action of mind-altering drugs in neural systems involved in mood and behavior?
 - \circ $\;$ Why do we sleep and where do dreams come from?

Cognitive Neuroscience

• Is concerned with neural mechanisms responsible for human mental activity, self awareness, mental imagery, and language.

The scientific Process

- Observation from experimentation designed to test a particular hypothesis, from carefully watching the world, from introspection, from human clinical; cases.
- Replication by repeating the experiment, or making similar observations on different subjects.
- Interpretation of the findings that depend on the state of knowledge at the time
- Verification through reproduction by other scientists.