pH and Buffers

Objective:

To measure pH and the effects of buffers and to explain in a short essay the importance of maintaining pH and buffering at critical values in the body, at the level of 85% proficiency for each student.

In order to achieve this objective, you will need to be able to:

- 1. Define *pH*, *buffer*
- 2. Measure pH using pH paper and pH meters
- 3. Observe buffer action and to compare three buffers.

pH and Buffers

Materials:

Group Supplies

pH meter pH paper (optional) forceps ring stand with titration burette and clamp 3 - 100 mL beakers 250 mL beaker for titration 250 mL beaker for rinse waste 0.0015 N HCl to fill the burette 20 mL of each Phosphate Buffer (Sorensen's buffer) Milk Vinegar 50 mL of each 0.9% NaCl Phosphate Buffer (Sorensen's buffer Blood plasma Safety glasses (as available)

Methods:

- 1. Using the pH paper and the pH meter, measure and record the pH of the solutions listed in Table 1.
- 2. Using a 50 mL burette with 0.0015 N HCl, titrate acid into each of the following solutions: (1) 50 mL of 0.9% NaCl, (2) 50 mL of Sorensen's buffer, (3) 50 mL of Blood Plasma. For each solution listed in Table 2 take a pH reading before titration and after each addition of HCl in 10 mL increments. Be careful to not cross contaminate each subsequent measurement.

Results:

Table 1 – Measurement of pH					
Solution	pH paper	pH meter (optional)			
20 mL of Phosphate Buffer					
20 mL milk					
20 mL vinegar					

Table 2 – Buffering action of NaCl, Phosphate Buffer, and Blood						
0.9% NaCl (50 mL)		Phosphate Buffer (50 mL)		Blood Plasma (50 mL)		
0.0015 N HCl Titrated	рН	0.0015 N HCl Titrated	рН	0.0015 N HCl Titrated	рН	
0 mL		0 mL		0 mL		
10 mL		10 mL		10 mL		
20 mL		20 mL		20 mL		
30 mL		30 mL		30 mL		
40 mL		40 mL		40 mL		
50 mL		50 mL		50 mL		

Discussion:

- 1. If you know pH, can you determine the actual hydrogen ion concentration? Explain.
- 2. The pH scale allows us to use simpler numbers to express hydrogen ion concentration. Can you think of any disadvantages in using pH instead of molarity?
- 3. Describe some activities or situations that might decrease body fluid pH, increase pH.
- 4. What is a buffer? Do buffers actually get rid of hydrogen ions? Explain.
- 5. Using the titration data, plot the 3 curves on one graph, with the pH on the Y axis and the mL of 0.0015 N HCl on the X axis. Compare the graphs from each titration. What do these graphs reveal about the buffering capacity of each solution?
- 6. Name an actual body buffer system. Using chemical formulas illustrate how this buffer system works if excess hydrogen ions are present and if too few hydrogen ions are present.
- 7. Describe the significance of buffer systems in pH regulation. That is, what would life be like without body fluid buffers?