Quiz Yourself: Chapter 1

Choices can be used more than once or not at all

B) Receptor measures the internal condition 2) B C) Set Point the optimal value for the internal condition 3) C D) Controller the variable to be maintained within an acceptable range 4) A	e internal condition2)Be internal condition3)a acceptable range4)A
---	--

Fill in

6. The ______ causes responses that change the internal condition.

- 8. In positive feedback, an *increase* in an internal condition will stimulate a response that ____increases___ the internal condition in order to *maximize* it.

Study Questions

1. Explain the organization of homeostatic regulatory systems. Include the concepts of internal conditions, receptors, controllers, effectors, responses, negative feedback, and positive feedback.

Quiz Yourself: Chapter 2

Choices can be used more than once or not at all

- Contain(s) electrolytes 1) __D_
- Composed mainly of water 2) ____D___
- Found in blood vessels (about 3L) 3) __C__

Water soluble

Found in interstitial fluid (about 11 L) 4) __B_

Eicosanoids are example

H, (NH2), (COOH), and (R

Twice as many H as C; same number of O as C

a chain of three carbons each with hydrogens and hydroxyl 16) A

carbons with hydrogen attached and a carboxyl group 17) B

- Found in cytoplasm of cells (about 28 L) 5) __A_
- 6-10. Matching (Typically)

Intracellular fluid

Interstitial fluid

All of the above

Vascular fluid

- A) Carbohydrates
- B) Proteins

1-5. Matching

A)

B)

C)

D)

- C) Lipids
- D) A&B
- E) B&C
- 11-15. Matching
- A) Disaccharides
- B) Monosaccharides
- C) Polysaccharides
- Two or more times H than C; much less O than C 10) __C_
 - starch or glycogen 11) __C_
 - deoxyribose 12) __B_
 - glucose 13) __B__
 - maltose 14) ___A___

6) D

С

В

Α

7)

8)

9)

ribose 15) __B__

16-20. Matching

- A) Glycerol
- B) Fatty acids
- C) Glycerides
- D) Eicosanoids
- E) Phospholipids

- two fatty acids connected by a carbon ring 18) __D__ glycerol with one, two or three fatty acids 19) __C__
 - glyceride with phosphate attached 20) __E_

Fill in

21. Hydrogen bonds represent the attraction of a hydrogen atom with _O, N, or F_.

22. Water is an excellent solvent due to _hydrogen_ bonding between water molecules.

23. Fats and steroids exhibit _no or limited_ solubility in water.

24. The more unsaturated a fat, the more _double_ _bonds_ there are.

25. In fat synthesis _glycerol_ and fatty acids combine to make glycerides plus _water_.

Study Questions

- 1. Compare and contrast the major chemical bonds; and explain their significance.
- 2. Describe the location and composition of body fluids.
- 3. Describe the organization of electrolytes; and explain their behavior in water.
- 4. Compare and contrast molarity, osmolarity and pH, and explain how buffers moderate changes in pH.
- 5. Compare and contrast the composition of carbohydrates, lipids and proteins; and their behavior in water.
- 6. Compare and contrast the primary, secondary, and tertiary structure of proteins; and explain their significance.

Ouiz	Yourself:	Chapter 3	
Zur,		Chapter 5	

1-5. Matching

- A
- В

Choices can be used more than once or not at all

A) B)	Anabolic reactions Catabolic reactions	usually use energy assemble molecules breakdown molecules usually produce energy include dehydration synthesis	1)A 2)A 3)B 4)B 5)A
6-10 A) B) C)). Matching Anabolic reactions Catabolic reactions A and B	Oxidation Hydrolysis Phosphorylation Dephosphorylation Dehydration synthesis	
11-1	5. Matching		
A)	Oxidation	$AB + H_2O \to A\text{-}OH + BH$	11) <u>B</u>
B)	Hydrolysis	$\text{A-OH} + \text{BH} \rightarrow \text{AB} + \text{H}_2\text{O}$,
C)	Phosphorylation	$A + P_i \rightarrow AP_i$	
D)	Dephosphorylation	$AP_i \rightarrow A + P_i$	
E)	Dehydration synthesis	$A + O \rightarrow AO$	15) <u> </u>
16-2	20. Matching		
A)	Allosteric control of enzyme	Controlled by phosphorylation	16) <u>B</u>
B)	Covalent control of enzyme	Can cause inhibition of enzyme	17) <u>D</u>

- C) No control of enzyme
- D) A or B

- Can cause activation of enzyme 18) ____
- Controlled by end product of reaction 19) A
- Not affected by phosphorylation or end product concentration 20) __C__

Fill in

- 21. Enzymes act as _catalysts_.
- 22. Enzymes can be made either of proteins or **RNA**.
- 23. _Hydrolysis_ is a common reaction in the breakdown of fats to fatty acids and glycerol.
- 24. **_Deydration_ _synthesis_** is a common reaction in the synthesis of peptides from amino acids.
- 25. **Cofactors** help an enzyme hold its normal conformation.

Study Questions

- 1. Explain the role of chemical reactions and enzymes in the functioning of cells.
- 2. Compare and contrast dehydration synthesis and hydrolysis. Include a description of the role of enzymes.
- 3. Explain the significance of phosphorylation and the role of ATP and GTP in phosphorylation.
- 4. Compare and contrast allosteric and covalent regulation, and explain the role of enzymes.
- 5. Describe the composition of nucleotides; and compare and contrast nucleotides with ATP and GTP.

Quiz Yourself: Chapter 4

1 E Matabina

Choices can be used more than once or not at all

1-5. A) B) C)	Matching Purine Pyrimidine none of the above	Uracil Cytosine Thymine Adenine Guanine	1)B 2)B 3)B 4)A 5)A
6-10 A) B) C) D)	0. Matching adenine guanine thymine cytosine	pairs with adenine pairs with guanine pairs with thymine pairs with cytosine pairs with uracil	6)C 7)D 8)A 9)B 10)A
11-1 A) B) C) D) E)	5. Place the following steps of Transcription in order. introns are removed messenger RNA moves to cytoplasm of cell RNA polymerase binds at the promoter sequence of the DNA precursor RNA formed from DNA - includes introns and exon messenger RNA formed by splicing together exons of the precu	second third s fourth	,
16-2 A) B) C) D) E)	20. Place the following steps of Translation in order. tRNA with an appropriate anticodon carries in a specific amir adjacent amino acids are linked by peptide bonds a termination sequence is reached mRNA attaches to ribosomes mRNA leaves the nucleus	no acid first second third fourth fifth	/

Fill in

- 21. Ribose or deoxyribose, a nitrogenous base and phosphate make a _nucleotide_.
- 22. RNA nucleotides contain _more_ oxygen than DNA nucleotides.
- 23. The strands of the DNA double helix are held together by hydrogen bonds between _purines_ and _pyrimidines_.
- 24. The <u>tDNA</u> (template DNA) nucleotide sequence Cytosine, Adenine, Thymine will lead to the messenger RNA nucleotide sequence _**Guanine**_ **Uracil**_ **Adenine**_.
- 25. In order to act, RNA polymerase must attach to the **_promoter_** region of the gene.

Study Questions

- 1. Compare and contrast the composition and organization of DNA and RNA.
- 2. Explain what is meant by "gene expression" and explain how transcription factors (chemical messengers) control gene expression.
- 3. Describe the major steps in transcribing DNA into mRNA, in translating mRNA into protein and in determining the destination of the protein.