Quiz Yourself: Chapter 16

Choices can be used more than once or not at all 1-5. Matching **QRS** waves A) represents atrial depolarization 1) __D B) PR interval represents ventricular repolarization 2) E C) QT interval represents ventricular depolarization 3) A D) P wave corresponds to time of atrial contraction 4) B E) T wave corresponds to time of ventricular contraction 5) C 6-10. Matching A) Ventricular contraction blood is pulled into the ventricles B) Ventricular relaxation blood is pushed out of the ventricles blood is pulled out of the atria and veins 8) B semilunar valves close and AV valves open 9) В AV valves close and semilunar valves open 10) A 11-15. Place in order the events responsible for the cycling of pacemaker cells. Ca²⁺ "T" channels open upon entry of Na⁺; "F" channels close 11) D Ca²⁺ "L" channels open (for about 150 msec) upon entry of Ca²⁺ B) K⁺ delayed rectifier channels open after a delay upon entry of Ca²⁺ 13) B C) "F' channels are opened by voltage moving toward hyperpolarization 14) С Ca²⁺ "L" channels close and K⁺ delayed rectifier channels close slowly 16-20. Matching (stimulus: reflex response) When carotid sinus pressure decreases A) heart rate increases 16) __A_ B) When carotid sinus pressure increases heart rate decreases 17) B blood vessels constrict 18)

> baroreceptor activity increases 19) __B_ baroreceptor activity decreases 20) A

Fill in

- 21. The **_SA**_ node has an intrinsic rate of about 80-100 action potentials / minute.
- 22. **Epinephrine** activates β-1 receptors in the heart and causes rate to **increase**.
- 23. _Acetylcholine_ activates Muscarinic M₂, G-protein coupled receptors in the heart and causes heart rate to _decrease_.
- 24. Stroke volume (SV) equals _EDV_ _ESV_.
- 25. Low arterial pressure will cause a reflex increase in heart rate.

Study Questions

- Explain the inter-relationships among cardiac output, heart rate, end diastolic volume (EDV), and end systolic volume (ESV). Include a description of what affects EDV and ESV.
- Explain the causal relationship between the electrical activity of the ECG and systolic and diastolic blood flow.
- 3. Explain the significance of ions, especially K⁺ and Ca²⁺, and various membrane channels, in the production of normal pacemaker rhythms and cardiac pumping.
- 4. Explain the role of the sympathetic nervous system and various hormones in the control of heart rate and force of contraction. Include the role of baroreceptor reflexes

Quiz Yourself: Chapter 17

Choices can be used more than once or not at all

A) B) C) D) E)	95 mmHg 40 mmHg 32 mmHg 12 mmHg 5 mmHg	Vena cava pressure Mean aortic pressure Pre-capillary pressure Post-capillary pressure Mean Ventricular pressure	3)C
6-10 A) B) C) D) E)	MAP = 116.66 MAP = 97.50 MAP = 93.33 MAP = 80.00 MAP = 76.66	BP = 90/70 BP = 120/80 BP = 140/70 BP = 110/85 BP = 150/100	- /
11-1 A) B) C)	5. Matching Causes vasoconstriction Causes vasodilation None of the above	Adenosine and nitric oxide Vasopressin acting on V1a receptors Angiotensin II acting on AT-1 receptors Epinephrine acting on beta-2 receptors Norepinephrine acting on alpha-1 receptors	12)A 13)A 14)B
16-2 A) B) C) D)	0. Matching (TPR ≈ VR; MAP ≈ MAF Total peripheral resistance (TPR) Mean arterial pressure (MAP) Cardiac Output (CO) None of the above	CO/TPR COxTPR MAP/CO MAP/TPR	16)D 17)B 18)A 19)C 20)D

Fill in

- 21. Blood flow equals pressure in minus pressure out, divided by _vascular_ _resistance_.
- 22. As blood vessels get smaller the resistance of those vessels gets _greater_.
- 23. Norepinephrine leads to vasoconstriction due to activation of _alpha-1_ receptors.
- 24. CO x TPR = **_MAP_**.
- 25. Carotid sinus baroreceptors respond to changes in arterial pressure to the head.

Study Questions

- 1. Explain the role of blood vessel size in determining blood flow <u>and</u> the distribution of blood flow in the body.
- Explain the role of the sympathetic nervous system and various hormones in the control of vasoconstriction.
- 3. Explain how the heart and blood vessels work together to influence blood pressure.
- 4. Explain how <u>and</u> why baroreceptor reflexes control heart rate, cardiac output, and vascular resistance.

Quiz Yourself: Chapter 18a

Choices can be used more than once or not at all 1-5. Matching Blood plasma A) contain(s) electrolytes, nutrients, organic wastes 1) __A B) Red blood cells contain(s)hemoglobin 2) __B__ White blood cells contain(s) fibrinogen C) contain(s) albumins 4) contain(s) globulins 6-10. Matching A) Basophils engulf and digest parasites 6) D B) Monocytes large cells that restrain pathogens 7) B C) Neutrophils are the most common phagocytes 8) C D) Eosinophils are subdivided into B, T, and NK cells 9) Ε Lymphocytes release histamine that in turn dilates blood vessels 10) E) 11-15. Matching Intracellular fluid extracellular fluid 11) D A) B) Interstitial fluid is about 3L of fluid 12) _ С Vascular fluid is about 11L of fluid 13) C) B and C is about 28L of fluid 14) found mainly in the spaces of connective tissues 15) __B_ 16-20. Place in order the events leading to blood clotting. Blood vessels are damaged A) first 16) __A_ B) Fibrinogen converted to fibrin second 17) E C) Prothrombin activator is formed third 18) С Prothrombin converted to thrombin fourth 19) D D) Platelets are activated and/or tissues factors are formed fifth 20) B

Fill in

- 21. As capillary blood pressure increases, fluid movement into the **_interstitial__space_** increases.
- 22. Increased capillary osmotic pressure enhances capillary _absorption_ (fluid movement).
- 23. **_Thrombiin**_ converts fibrinogen to fibrin.
- 24. Fibrinolysis involves cleaving of plasminogen to _plasmin_ and the dissolving of clots.
- 25. Blood type O+ typically has antibodies to the AB protein (s).

Study Questions

- 1. Explain the importance of blood plasma to the functions of blood.
- 2. Explain the inter-relationship between vascular fluid, interstitial fluid, and intracellular fluid. Include the role of capillary absorption and filtration.
- 3. Explain the process of hemostasis after tissue injury.
- 4. Explain the significance of Rh incompatibility, especially during pregnancy.