Choices can be used more than once or not at all

		or not at an
 1-5. Matching A) surface of membrane fa B) surface of membrane fa C) interior core of membrar D) none of the above E) A and B w 	cing intracellular fluid hydrophobic	2)C 3)E
, 3	brane rapidly without transporter membrane without transporter Small lipids Small sugars Small amino acids	8)A 9)B
	asport depends on concentration gradient of a driving ion Allow facilitated diffusion of small molecules (e.g. glucose) Transport of ions depends on energy from ATP Are transmembrane proteins Allow diffusion of ions	12)D 13)A 14)E
16-20. Matching (epithelial traA) Basolateral membraneB) Apical membrane	Ansport) Often has Na ⁺ channels Faces the interstitial fluid Commonly has Na ^{+/} K ⁺ pumps Often has Na ^{+/} Glucose Co-transporters	17)A 18)A

Often has facilitative glucose transporters 20) A

Fill in

- 21. In a membrane, the **_lipids**_ of the phospholipids in one monolayer face the **_lipids**_ of the phospholipids in the other monolayer.
- 22. It is difficult for polar molecules to pass through the phospholipid bilayer because **_lipid_** _**molecules_** attract one another.
- 23. The passage of solutes through channels is an example of _passive_ transport.
- 24. The passage of solutes using co-transporters is an example of **_secondary__active_** transport.
- 25. In diffusion water or solutes pass from an area of high to _low_ concentration.

Study Questions

- 1. Explain the process of diffusion and its role in the movement of substances across the plasma membrane.
- 2. Explain the role of channels and pumps in the movement of water or electrolytes across the plasma membrane.
- 3. Compare and contrast the roles of channels, facilitative transporters, co- and countertransporters, and pumps

1-5. Matching

- A) amines
- B)
- C)
- D)
- E)
- 6-10. Matching
- A)
- B)

Choices can be used more than once or not at all

are synthesized as short chains of amino acids 1) __C__ steroids are synthesized from single amino acids 2) __A__ peptides are synthesized from cholesterol 3) B amino acids include glycine and glutamate 4) D none of the above include epinephrine 5) A are water soluble steroids 6) B are lipid soluble thyroxin 7) __B__ peptides 8) A 9) A amino acids most non-thyroid amines 10) ____ 11-15. Matching (chemical messengers) Bind to intracellular receptors (Transcription factors) Steroid messengers 11) A Bind to G-protein coupled receptors (GPCRs) Amino acid messengers 12) __E__ Eicosanoid messengers 13) __B__ Bind to tyrosine kinase linked receptors (RTK) Most peptide messengers 14) ___B___ Bind to channel linked receptors B and D Non-thyroid amine messengers 15) B

16-20. Matching (REB = response element binding)

- G-protein coupled receptors (GPCRs) A)
- B) Channel linked receptors
- C) Enzyme linked receptors
- Intracellular receptors D)

Utilize phospholipase C 17) A Include ligand-gated channels 18) B

Utilize adenylyl cyclase 16) __A__

- Include the tyrosine kinase linked receptors 19) C
- Often are REB proteins that form transcription factors 20) D

Fill in

A)

B)

C)

D) E)

- 21. Chemical messengers bind to _extra_-cellular or _intra_-cellular receptors.
- 22. Water soluble chemical messengers bind to ligand gated channels, enzyme linked receptors, or **_G-protein_** coupled receptors.
- 23. RTKs phosphorylate _IRS_ and _Shc_, causing activation, respectively, of Akt and MAPK.
- 24. GPCRs control enzymes such as adenylyl cyclase to produce _cAMP_.
- 25. In addition to affecting cyclase, activation of GPCRs can increase the activity of phospholipase-C, causing production of IP3 and DAG.

Study Questions

- 1. Describe the major classes of chemical messenger.
- 2. Explain how lipid soluble chemical messengers, using cortisol as an example, cause cellular responses.
- 3. Explain how water soluble chemical messengers, using glucagon as an example, cause cellular responses.
- Compare and contrast the organization of channel linked receptors, tyrosine kinase linked receptors, and G-protein coupled receptors.

- Choices can be used more than once or not at all 1-5. Matching A) 140 mM intracellular concentration of sodium 1) __C__ B) 100 mM extracellular concentration of sodium 2) ___A___ C) 15 mM extracellular concentration of calcium 3) E D) 5 mM intracellular concentration of potassium 4) __A_ 3 mM extracellular concentration of potassium E) 5) D 6-10. Matching A) voltage gated channels are commonly found in axons 6) Α B) ligand gated channels are commonly found in dendrites 7) B are commonly found in cell bodies 8) В are commonly found in presynaptic membranes 9) А are commonly found in postsynaptic membranes 10) ___B_ 11-15. Place the following events in the order leading to the release of a neurotransmitter. A) The neurotransmitter diffuses out of the vesicle into the synaptic cleft first 11) С Synaptic vesicle fuse with the presynaptic membrane second 12) B) D third 13) _ C) An action potential reaches the synaptic bulb Е Voltage gated calcium channels open D) fourth 14) В fifth 15)
- E) Calcium enters the intracellular fluid

16-20. Matching

- Slow EPSP A) caused by opening ligand gated sodium channels 16) _ В B) Fast EPSP caused by opening ligand gated chloride channels 17) D
- C) Slow IPSP caused by opening calcium channels that are G-protein coupled 18) A
- Fast IPSP caused by closing potassium channels that are G-protein coupled 19) D) Α caused by opening potassium channels that are G-protein coupled 20) C

Fill in

- Neurotransmitters are released from _synaptic_ vesicles_.
- 22. **Calcium** is essential for the fusion of the synaptic vesicles to the presynaptic membrane.
- 23. Rapid release of neurotransmitter at a single synapse can cause temporal summation.
- 24. Ligand gated channels open or close in response to specific chemicals.
- 25. Neurotransmitters are water soluble.

Study Questions

- 1. Describe the general organization and purpose of unipolar and multipolar neurons.
- Describe the intracellular and extracellular distribution of common ions and explain their role in the generation of the resting membrane potential.
- 3. Explain the role of membrane potentials and ion channels in the generation and conduction of action potentials.
- 4. Explain the function of synaptic communication and explain the mechanisms responsible for the secretion of neurotransmitters.
- Explain how postsynaptic receptors respond to common neurotransmitters, and the significance of EPSPs and IPSPs.

1-5. Matching (in the context of sensory neurons) A) sensory receptors/dendrites generate nervous signals B) peripheral axon release neurotransmitters 2) C C) synaptic bulbs detect chemical or physical signals 3) A D) central axon conduct signals toward the synaptic bulb 4) D conduct signals from the receptors/dendrite 5) B 6-10. Matching A) C fibers are the axons of most mechanoreceptor neurons 6) C B) Aδ fibers conduct signals about touch, pressure, vibration 7) C C) Aβ fibers are the axons of nociceptor neurons 8) D D) A and B conduct fast or prickling pain 9) В E) All of the above conduct slow or aching pain 10) ___A__ 11-15. Matching Nociceptors respond to local movement 11) E A) B) Photoreceptors respond to local chemicals 12) __C_ C) respond to tissue damage 13) ___A__ Chemoreceptors

16-20. Place in order the events for detecting and transferring the effects of sensory stimulation.

 A)
 A stimulus alter the permeability of the sensory receptor membrane
 first 16) __A__

 B)
 Neurotransmitter is released onto specific neurons in the CNS
 second 17) __C__

 C)
 The receptor (dendritic) potential reaches threshold
 third 18) __E__

 D)
 The action potential is propagated to the CNS
 fourth 19) __D__

 E)
 An action potential is generated
 fifth 20)

Fill in

D)

E)

Thermoreceptors

Mechanoreceptors

- 21. Sensory receptors are commonly part of the sensory neuron's _dendrite_.
- 22. Sensory transduction converts a _physical_ signal into a neural signal.
- 23. In the dorsal column pathways the sensory neurons synapse in the _medulla_.
- 24. In the spinothalamic pathways the sensory neurons synapse in the _spinal_ _cord_.
- 25. Modulation of pain depends on the _inhibition_ of nervous transmission.

Study Questions

- 1. Describe the organization of sensory neurons and accessory sensory cells.
- 2. Describe the general mechanisms responsible for the transduction of sensory information.
- Explain with diagrams the circuitry responsible for processing somatosensory signals in the posterior column and spinothalamic pathways.
- 4. Explain how synaptic connections are involved in the filtering of sensory information.
- 5. Explain the basis for referred pain and the modulation of pain.

Choices can be used more than once or not at all

respond to temperature 14) __D__

respond to light 15) ___B___