Physiology 101 text chp 5-8; Lab # 5-8 D. G. Ward

4)

5) ____

28) _____

29) _____

30) ____

31) ____

Name

Choices may be used more than once or not at all.

1-5. Matching

Matching

- Active transport Pumps change shape when phosphorylated using ATP 1) _____ A) Co-/counter- Transporters are integral transmembrane transporter proteins) 2) _____ B) 3)_____
- C) Facilitative Transporters do not change shape (act as simple passageways)
- change shape spontaneously (aka carrier proteins) D) Channels (passive) change shape in presence of ion concentration gradient
- E) All of these

6-10. Matching.

- Are sometimes called "secondary active transporters" A) Pumps 6) ____ 7) _____ 8) _____ 9) _____ Are primary active transporters B) Channels Are passive transporters C) Co-transporters Counter transporters Facilitative transporters 10)
- 11-15. Matching
- Dialysis A)
- movement in general due to concentration gradient 11) ____ movement of water across a cell membrane due to pressure 12) _____ B) Diffusion
- 13) _____ Osmosis movement of water across a cell membrane due to concentration C)
- D) Filtration
 - movement of solute across a cell membrane due to concentration 14) _____ movement of solvent across a cell membrane due to concentration 15)
 - 16-20. Matching.
 - Osmolarity is normal A)
 - Osmolarity is high B)
 - Osmolarity is low C)

Water concentration is high 17) Water concentration is low 18)

Solute concentration is normal 16)

- Solution is hypertonic 19)
- Solution is hypotonic 20)

21-25. Matching

A & B

C)

Channels (passive) A) B) Pumps

- Function as simple passageways 21) Are integral transmembrane proteins 22)
- Change shape when phosphorylated using ATP
 - 23) Allow diffusion of ions from high to low concentration 24)
 - Force movement of ions from low to high concentration 25) _

Include norepinephrine and epinephrine

Steroids (such as estrogens, cortisol)

Are synthesized from cholesterol

Include glycine and glutamate

26-30. Matching (major chemical classes of chemical messengers)

- Amines Are short proteins (short chains of amino acids) A) 26) Are synthesized from single amino acids 27) _____
- Steroids B)
- C) Peptides
- D) Amino acids
- 31-35. Matching
- A) Water soluble chemical messenger
- B) Lipid soluble chemical messenger
- C) None of the above
- Peptides (such as insulin, glucagon, vasopressin) 32) _____ Amino acids (such as glutamate, glycine, GABA) 33)
- Thyroid amines (such as thyroxin. triiodothyronin) 34) _____ Non-thyroid amines (such as norepinephrine, acetylcholine) 35) ____

36-4 A)	0. Matching G-protein coupled receptors	Often are ligand-gated channels	s (36)	
B)	Enzyme linked receptors	Commonly act via adenylyl cyclase		
Ċ)	Channel linked receptors	Commonly act via phospholipase (
D)	Response elements	Commonly are linked to tyrosine kinase	,	
,		Usually are part of promoter region of a gene		
			,	
41-4	5. Place the following events in order for m	essaging using a G-protein coupled receptor.		
A)	G-protein coupled receptor releases G-pro	oteins firs	t 41)	
B)	A chemical messenger binds to a G-prote		3 42)	
C)	G-protein alpha binds to GTP and floats u		d 43)	
D)	G-protein alpha activates Adenylyl Cyclas			
E)	ATP is converted to cAMP	fiftl	า 45)	
40 F	0. Diana tha fallowing avanta in andar far a			
		essaging using a G-protein coupled receptor.	+ 46)	
A)	G-protein coupled receptor releases G-pro		'	
B)	A chemical messenger binds to a G-prote		,	
C)	G-protein alpha binds to GTP and floats u		,	
D)	G-protein alpha activates Phospholipase (PIP2 is converted to IP3 and DAG	fiftl	'	
E)	FIFZ IS CONVENED TO IFS and DAG	110	ו 50)	
51-5	5 Place the following events in order for m	essaging using a G-protein coupled receptor.		
A)	G-protein coupled receptor releases G-pro		t 51)	
B)	A chemical messenger binds to a G-prote		,	
C)	G-protein beta-gamma floats under plasm			
D)	G-protein beta-gamma binds to potassium			
E)	Potassium channels open	fiftl		
,			,	
56-6	0. Matching (PLC = phospholipase C; IP3 =	= inositol triphosphate; DAG = diacylglycerol)		
A)	G-protein coupled receptors	Are integral transmembrane proteins		
B)	Channel linked receptors	Function as a receptor and ion channe		
C)	A and B	Control beta subunit that opens K+ channels		
		unit that activates PLC to produce IP3 and DAC		
	Control alpha subunit t	hat activates adenylyl cyclase to produce cAMF	P 60)	
61 6	E Matching (alcoast values for most calls a	at reat)		
	 Matching (closest values for most cells a 5 mM 	extracellular concentration of Na	+ 61)	
A) B)	15 mM	intracellular concentration of Na	,	
C)	105 mM	extracellular concentration of C		
D)	140 mM	extracellular concentration of K		
0)		intracellular concentration of K		
			00)	
66-7	0. Matching			
A)	When Na ⁺ channels are open	K ⁺ diffuses into ce	I 66)	
B)	When CI - channels are open	Na* diffuses into cel	l 67)	
C)	When K ⁺ channels are open	CI - diffuses into ce	I 68)	
D)	None of the above	K ⁺ diffuses out of ce		
,		Na ⁺ diffuses out of ce	l 70)	
_ · -				
		ald occur upon stimulation of a sensory neuror		
A)	Voltage gated Na ⁺ channels open in the axo		,	
B)	A stimulus opens Na ⁺ channels of the mem		,	
C)	The action potential opens Ca ²⁺ channels		,	
D) E)	Glutamate is released onto specific neuro		,	
⊢ \	The action potential is propagated along t	the axon fiftl	ר ז (1	

Physiology 101 text chp 5-8; Lab # 5-8

76-8	0. Matching				
A)	Voltage gated channels	Are found in axons	76)		
B)	Ligand gated channels	Are found in dendrites	77)		
C)	A and B	Are found in axon hillock	78)		
		Typically are found in synaptic bulbs	79)		
		Are found in postsynaptic membranes	80)		
81-8	5. Matching (in the context of an acti	on potential)			
A)	-75 mV	a typical resting membrane potential	81)		
В)́	-70 mV	the voltage when voltage gated K ⁺ channels open	82)		
Ć)	-55 mV to -60mV	the voltage when voltage gated K ⁺ channels close	82) 83)		
D)	+30 mV	the voltage when voltage gated Na ⁺ channels open	84)		
		the voltage when voltage gated Na ⁺ channels close	85)		
<u> </u>	0. Place these events in the order th	ey would occur to causes the secretion of a neurotran	omittor		
A)	Ca ²⁺ binds to synaptotagmin and o		86) <u> </u>		
B)	Neurotransmitter diffuses from sy		87)		
C)	An action potential reaches the syn		88)		
D)	Voltage gated Ca ²⁺ channels open	fourth			
E)	Ca ²⁺ enters the intracellular fluid	fifth	90)		
,			,		
	5. Matching				
A)	Slow EPSPs	Caused by opening ligand gated Cl ⁻ channels	91)		
B)	Fast EPSPs	Caused by opening ligand gated Na ⁺ channels	92)		
C)		sed by closing K ⁺ channels that are G-protein coupled	93)		
D)		ed by opening K^+ channels that are G-protein coupled	94)		
	Caused	by opening Ca ²⁺ channels that are G-protein coupled	95)		
96-1	00. Matching				
A)	Inhibitory neurotransmitters	Cause excitatory postsynaptic potentials (EPSPs)	96)		
В)́	Excitatory neurotransmitters	Cause inhibitory postsynaptic potentials (IPSPs)	97)		
,		Make intracellular fluid more positive	98)		
		GABA and glycine are examples	99)		
		Glutamate is an example	100)		
101	105 Motobing				
A)	105. Matching Primary sensory neuron mechanore	eceptors Taste uses	101)		
B)	Accessory sensory cell mechanore				
C)	Primary sensory neuron thermorece				
D)	Accessory sensory cell chemorece		100)		
E)	Accessory sensory cell photorecept				
,					
		der that somatosensory signals travel in the PNS and	CNS.		
A)	Thalamus	first	106)		
B)	Axons of the sensory neurons	second	107)		
C)	Primary somatosensory cortex	third	108)		
D) E)	Spinal cord or medulla oblongata Receptors of general sensory neuro	iourin fifth	109) 110)		
L)	Receptors of general sensory neuro		110)		
111-115. Matching					
A)	Posterior column pathways	Carry signals about touch	111)		
B)	Spinothalamic pathways	Carry signals about temperature	112) <u> </u>		
	· · ·	Carry signals about tissue damage	113)		
		Primary sensory neurons synapse in spinal cord	114)		
	Prin	nary sensory neurons synapse in medulla oblongata	115)		

Fill in

- 1. In a cell membrane, the ______ of the phospholipids face each other.
- 2. It is difficult for polar molecules to pass through the center of the phospholipid bilayer because ______ molecules are repelled by ______ molecules.
- 3. A transmembrane proteins that serves as a passageway for *diffusion* of an <u>ion</u> across a cell membrane is called a ______.
- 4. Using # 3 above, <u>Na⁺</u> can move from an area of _____ Na⁺ concentration to an area of _____ Na⁺ concentration.
- 5. Using # 3 above, <u>water</u> can move from an area of ______ water concentration to an area of ______ water concentration.
- 6. A transmembrane protein that uses ATP to change shape and transport ions is called a
- 7. Using # 5 above, <u>Na⁺</u> can move from an area of ______ to an area of ______ concentration.
- 8. The resting <u>ion</u> concentrations inside and outside of a neuron (or other cell) are produced largely by transmembrane proteins called ______.
- 9. ______ soluble chemical messengers frequently bind to response element binding proteins in the intracellular fluid.
- 10. ______ soluble chemical messengers typically bind to channel linked receptors, tyrosine kinase linked receptors, or G-protein coupled receptors.
- 11. Channel linked receptors that bind to and respond to chemical messengers are frequently called ______ gated channels.
- 12. _____ binds to and opens ligand gated Cl⁻ channels.
- 13. _____ binds to and opens ligand gated Na⁺ channels (AMPA receptors).
- 14. _____ binds to G-protein coupled receptors and opens K⁺ channels.
- 15. ______ is an example of a messenger that binds to GPCRs and opens Ca²⁺ channels
- 16. _____ gated channels open in response to specific distortion.
- 17. _____ gated channels open in response to specific voltages.
- 18. _____ gated channels open in response to specific chemical messengers.
- 19. ______ is essential for the fusion of the synaptic vesicles to the presynaptic membrane
- 20. The secretion of ______ and _____ neurotransmitters onto the dendrites of multipolar neurons is the foundation for neural information processing.
- 21. ______ neurotransmitters can nullify (reverse) the effects of excitatory neurotransmitters.
- 22. Sensory transduction converts a ______ stimulus into a neural signal.
- 23. In the posterior (dorsal) column pathways the primary sensory neurons synapse in the _____ (two words).

Physiology 101 text chp 5-8; Lab # 5-8

_B 6)

Name

Choices may be used more than once or not at all.

1-5. Matching

Matching

- Active transport Pumps change shape when phosphorylated using ATP A) 1) Α Co-/counter- Transporters are integral transmembrane transporter proteins) B) 2) E do not change shape (act as simple passageways) C) Facilitative Transporters 3) D D) С
- change shape spontaneously (aka carrier proteins) Channels (passive) 4) E) All of these change shape in presence of ion concentration gradient 5) __B_
- 6-10. Matching.

Are sometimes called "secondary active transporters" A)

- Are primary active transporters B)
- Are passive transporters C)

С Channels 7) Co-transporters 8)

Pumps

- Counter transporters 9)
- Facilitative transporters 10) C

- 11-15. Matching
- Dialvsis A)
- movement in general due to concentration gradient 11) __B B) Diffusion movement of water across a cell membrane due to pressure 12) __D_
- Osmosis movement of water across a cell membrane due to concentration 13) __C_ C)
- D) Filtration movement of solute across a cell membrane due to concentration 14) A
 - movement of solvent across a cell membrane due to concentration 15) __C_
- 16-20. Matching.
- Osmolarity is normal A)
- Osmolarity is high B)
- Osmolarity is low C)

- Solute concentration is normal 16)
 - Water concentration is high 17) С
 - Water concentration is low 18) В
 - Solution is hypertonic 19) В
 - Solution is hypotonic 20) С

- 21-25. Matching
- Channels (passive) A)

Function as simple passageways 21) Are integral transmembrane proteins 22) С

B) Pumps C) A & B

- Change shape when phosphorylated using ATP 23) В
- Allow diffusion of ions from high to low concentration 24)
- Force movement of ions from low to high concentration 25) ___B_

26-30. Matching (major chemical classes of chemical messengers)

- Amines Are short proteins (short chains of amino acids) 26) С
- A) Steroids B)
- C) Peptides
- D) Amino acids

- Are synthesized from cholesterol 29) B

- 31-35. Matching
- A) Water soluble chemical messenger
- B) Lipid soluble chemical messenger
- C) None of the above
- Amino acids (such as glutamate, glycine, GABA) 33) Thyroid amines (such as thyroxin. triiodothyronin) 34)
- В Non-thyroid amines (such as norepinephrine, acetylcholine) 35) __A

- Are synthesized from single amino acids 27) Include norepinephrine and epinephrine 28)
 - Include glycine and glutamate 30) D
 - Steroids (such as estrogens, cortisol) 31)
- Peptides (such as insulin, glucagon, vasopressin) 32) ____A_
 - Α

36-4 A) B) C) D)	0. Matching G-protein coupled receptors Enzyme linked receptors Channel linked receptors Response elements	Often are ligand-gated channels Commonly act via adenylyl cyclase Commonly act via phospholipase C Commonly are linked to tyrosine kinase Usually are part of promoter region of a gene	37)A 38)A 39)B
41-4 A) B) C) D) E)	5. Place the following events in order for m G-protein coupled receptor releases G-protein A chemical messenger binds to a G-protein G-protein alpha binds to GTP and floats u G-protein alpha activates Adenylyl Cyclas ATP is converted to cAMP	in coupled receptor second inder plasma membrane third se fourth	41)B 42)A 43)C 44)D 45)E
46-5 A) B) C) D) E)	0. Place the following events in order for m G-protein coupled receptor releases G-protein A chemical messenger binds to a G-protein G-protein alpha binds to GTP and floats u G-protein alpha activates Phospholipase (PIP2 is converted to IP3 and DAG	in coupled receptor second inder plasma membrane third C fourth	46)B 47)A 48)C 49)D 50)E
51-5 A) B) C) D) E)	5. Place the following events in order for m G-protein coupled receptor releases G-pro A chemical messenger binds to a G-prote G-protein beta-gamma floats under plasm G-protein beta-gamma binds to potassium Potassium channels open	in coupled receptor second na membrane third n channels fourth	51)B 52)A 53)C 54)D 55)E
56-6 A) B) C)	G-protein coupled receptors Channel linked receptors A and B Control alpha sub-	= inositol triphosphate; DAG = diacylglycerol) Are integral transmembrane proteins Function as a receptor and ion channel Control beta subunit that opens K+ channels unit that activates PLC to produce IP3 and DAG hat activates adenylyl cyclase to produce cAMP	57) <u>B</u> 58) <u>A</u> 59) <u>A</u>
61-6 A) B) C) D)	5. Matching (closest values for most cells a 5 mM 15 mM 105 mM 140 mM	at rest) extracellular concentration of Na ⁺ intracellular concentration of Na ⁺ extracellular concentration of CI extracellular concentration of K ⁺ intracellular concentration of K ⁺	62)B 63)C 64)A
66-7 A) B) C) D)	0. Matching When Na⁺ channels are open When CI [–] channels are open When K⁺ channels are open None of the above	K ⁺ diffuses into cell Na ⁺ diffuses into cell CI ⁻ diffuses into cell K ⁺ diffuses out of cell Na ⁺ diffuses out of cell	67)A 68)B 69)C
71-7 A) B) C) D) E)	5. Place these events in the order they would voltage gated Na ⁺ channels open in the axo A stimulus opens Na ⁺ channels of the mem The action potential opens Ca ²⁺ channels Glutamate is released onto specific neuror The action potential is propagated along the action potential potential is propagated along the action potential pot	brane of the sensory dendrite second in the synaptic bulb third ons in the CNS fourth	71) <u>B</u> 72) <u>A</u> 73) <u>E</u>

 76-80. Matching A) Voltage gated channels B) Ligand gated channels C) A and B 	Are found in axons 76)A Are found in dendrites 77)B Are found in axon hillock 78)A Typically are found in synaptic bulbs 79)C Are found in postsynaptic membranes 80)B
 81-85. Matching (in the context of A) -75 mV B) -70 mV C) -55 mV to -60mV D) +30 mV 	action potential) a typical resting membrane potential 81)B_ the voltage when voltage gated K ⁺ channels open 82)D_ the voltage when voltage gated K ⁺ channels close 83)A_ the voltage when voltage gated Na ⁺ channels open 84)C_ the voltage when voltage gated Na ⁺ channels close 85)D_
 86-90. Place these events in the o A) Ca²⁺ binds to synaptotagmin B) Neurotransmitter diffuses f C) An action potential reaches t D) Voltage gated Ca²⁺ channels E) Ca²⁺ enters the intracellular t 	n synaptic vesiclesecond 87)D_synaptic bulbthird 88)E_benfourth 89)A_
 91-95. Matching A) Slow EPSPs B) Fast EPSPs C) Slow IPSPs D) Fast IPSPs 	Caused by opening ligand gated Cl ⁻ channels 91)D Caused by opening ligand gated Na ⁺ channels 92)B Caused by closing K ⁺ channels that are G-protein coupled 93)A Caused by opening K ⁺ channels that are G-protein coupled 94)C used by opening Ca ²⁺ channels that are G-protein coupled 95)A
96-100. MatchingA) Inhibitory neurotransmittersB) Excitatory neurotransmitters	Cause excitatory postsynaptic potentials (EPSPs) 96)B_ Cause inhibitory postsynaptic potentials (IPSPs) 97)A_ Make intracellular fluid more positive 98)B_ GABA and glycine are examples 99)A_ Glutamate is an example 100)B_
 101-105. Matching A) Primary sensory neuron med B) Accessory sensory cell mech C) Primary sensory neuron ther D) Accessory sensory cell chem E) Accessory sensory cell photo 	oreceptorsVision uses 102)E_oreceptorsHearing uses 103)B_eceptorsTactile reception uses 104)A_
 106-110. Place these structures in A) Thalamus B) Axons of the sensory neuror C) Primary somatosensory cort D) Spinal cord or medulla oblong E) Receptors of general sensor 	
111-115. MatchingA) Posterior column pathwaysB) Spinothalamic pathways	Carry signals about touch 111)A Carry signals about temperature 112)B Carry signals about tissue damage 113)B Primary sensory neurons synapse in spinal cord 114)B Primary sensory neurons synapse in medulla oblongata 115)A

Primary sensory neurons synapse in medulla oblongata 115) _____

Fill in

- 1. In a cell membrane, the __fatty___acids__ of the phospholipids face each other.
- 2. It is difficult for polar molecules to pass through the center of the phospholipid bilayer because _____polar___ molecules are repelled by _____non-polar___ molecules.
- 3. A transmembrane proteins that serves as a passageway for *diffusion* of an <u>ion</u> across a cell membrane is called a _____channel___.
- Using # 3 above, <u>Na⁺</u> can move from an area of <u>high</u> Na⁺ concentration to an area of <u>low</u> Na⁺ concentration.
- 5. Using # 3 above, <u>water</u> can move from an area of <u>high</u> water concentration to an area of <u>low</u> water concentration.
- 6. A transmembrane protein that uses ATP to change shape and transport ions is called a __pump__.
- 7. Using # 6 above, <u>Na⁺</u> can move from an area of <u>low</u> to an area of <u>high</u> concentration.
- 8. The resting <u>ion</u> concentrations inside and outside of a neuron (or other cell) are produced largely by transmembrane proteins called __pumps__.
- 9. <u>Lipid</u> soluble chemical messengers frequently bind to response element binding proteins in the intracellular fluid.
- 10. <u>Water</u> soluble chemical messengers typically bind to channel linked receptors, tyrosine kinase linked receptors, or G-protein coupled receptors.
- 11. Channel linked receptors that bind to and respond to chemical messengers are frequently called _____ligand___ gated channels.
- 12. __Glycine__ binds to and opens ligand gated Cl⁻ channels.
- 13. __Glutamate__ binds to and opens ligand gated Na⁺ channels (AMPA receptors).
- 14. __GABA__ binds to G-protein coupled receptors and opens K⁺ channels.
- 15. __Glutamate__ is an example of a messenger that binds to GPCRs and opens Ca²⁺ channels
- 16. __Movement__ gated channels open in response to specific distortion.
- 17. __Voltage__ gated channels open in response to specific membrane potentials.
- 18. __Ligand__ gated channels open in response to specific chemical messengers.
- 19. __Calcium__ is essential for the fusion of the synaptic vesicles to the presynaptic membrane
- 20. The secretion of __excitatory__ and __inhibitory__ neurotransmitters onto the dendrites of multipolar neurons is the foundation for neural information processing.
- 21. __Inhibitory__ neurotransmitters can nullify (reverse) the effects of excitatory neurotransmitters.
- 22. Sensory transduction converts a __physical__ stimulus into a neural signal.
- 23. In the posterior (dorsal) column pathways the primary sensory neurons synapse in the __Medulla___ __oblongata__ (two words).