Quiz Yourself: Chapter 9

1-5 Matching

Choices can be used more than once or not at all

A) B) C)	emmetropic eye hyperopic eye myopic eye Eye lens cannot become more con Eye lens cannot become less convex	eyeball is normal length eyeball is longer than normal eyeball is shorter than normal nvex as needed for near vision as needed for distance vision	1)A 2)C 3)B 4)B 5)C
6-1(A) B) C) D) E)	 Matching (connects to) left retina of left eye left retina of right eye right retina of left eye A and B A and C 	left optic tract left optic nerve left superior colliculus left primary visual cortex left lateral geniculate nucleus	6)D 7)E 8)D 9)D 10)D
11-´ A) B) C) D) E)	5. Place in order the events following a photorecep release of glutamate is reduced phosphodiesterase is activated opsin activates G-protein (transducin) Phosphodiesterase breaks down cyclic-GMP voltage gated sodium and calcium channels close	tor absorbibg light. first second third fourth fifth	11)C 12)B 13)D 14)E 15)A
16-2 A) B) C) D) E)	20. Place in order the events following exposure of t movement of the stereocilia toward the tallest cilia stereocilia of hair cells bend against tectorial mem synaptic vesicles fuse with the presynaptic membr voltage gated calcium channels open glutamate is released	he basilar membrane to moven opens K ⁺ channels first brane second ane third fourth fifth	nent. 16)B 17)A 18)D 19)C 20)E

Fill in

- 21. Near sightedness is corrected with **_concave_** lenses.
- 22. Yellow light causes a (n) _increase_ in glutamate release from blue absorbing photoreceptors.
- 23. Damage to the left optic nerve would cause blindness in the _left_ eye.
- 24. High frequency sound is detected by portions of the cochlea _near_ the oval window.
- 25. Movement of the vestibular and basement membranes is detected by _hair_ cells in the cochlear duct.

Study Questions

- 1. Explain the mechanisms responsible for accommodation of the lens.
- 2. Describe the organization of the retina and explain the mechanisms responsible for the detection of lightness and darkness by the photoreceptors.
- 3. Describe the organization of the cochlea and explain the mechanisms responsible for the detection of sound by the hair cells. Include the detection of different frequencies.

Quiz Yourself: Chapter 11

Choices can be used more than once or not at all

1-5. A) B) C) D) E)	Matching Skeletal muscle Cardiac muscle Smooth muscle A, B, and C A and B	Contain(s) Contain(s) trop Contain(s) actin and ATPase of myosin heads is intrinsical ATPase of myosin heads must be activated by light-chai	troponin omyosin 1 myosin Ily active n kinase	1) _ 2) _ 3) _ 4) _ 5) _	E D E C
6-10 A) B) C) D) E)). Place the follow Muscle cell cont Myosin heads b Ca ²⁺ diffuses int Myosin head be Ca ²⁺ binds to tro	ving in order as they would occur in a skeletal or cardiac r racts ind to actin o intracellular fluid nds and pulls actin toward M-line oponin and moves tropomyosin away from actin	nuscle ce first second third fourth fifth	ell. 6) _ 7) _ 8) _ 9) _ 10) _	C E B D A
11-1 A) B) C) D) E)	5. Place these st Action potential Calcium ions are Acetylcholine bi Acetylcholine is Action potential	eps in the order causing activation of skeletal muscle cell propagates along sarcolemma e released from sarcoplasmic reticulum (SR) nds to nicotinic-m receptors in motor end plate released from motor neuron bulb into synaptic cleft opens voltage gated Ca2+ channels in T-tubules and SR	by a neu first second third fourth fifth	uron. 11) _ 12) _ 13) _ 14) _ 15) _	D C A E B
16-2 A) B) C) D) E)	20. Place these st Myosin light cha MLC kinase acti ATPase splits A Myosin head be Myosin head bir	eps in order for initiating smooth muscle contraction. in (MLC) kinase is activated by calcium-calmodulin vates (Pi) the ATPase of myosin head TP and energizes the cross bridges nds and pulls actin toward M-line ind to actin	first second third fourth fifth	16) _ 17) _ 18) _ 19) _ 20) _	A B C E D

Fill in (MLC = myosin light chain)

- 21. In skeletal and cardiac muscle myosin cross bridges are phosphorylated and activated by _____ATP_____.
- 22. In skeletal and cardiac muscle actin must be <u>**uncovered**</u> to allow cross bridge cycling.
- 23. In skeletal and cardiac muscle calcium binds to __troponin__ and uncovers actin.
- 24. In smooth muscle calcium is involved in <u>activating</u> MLC kinase.
- 25. In smooth muscle MLC kinase is necessary to <u>activate / phosphorylate</u> the ATPase of the myosin heads and allow cross bridge cycling.

Study Questions

- 1. Explain how nervous stimulation will cause the contraction of skeletal muscle.
- 2. Explain the role of calcium in muscle contraction. Include differences between skeletal, cardiac, and smooth muscle.
- 3. Compare and contrast the mechanisms for control of contraction of skeletal muscle, cardiac muscle, and smooth muscle.

Quiz Yourself: Chapter 12

Choices can be used more than once or not at all

1-5. Matching (in the context of Motor Neurons)								
A)	Synaptic bulbs	generate action potentials	1)	B				
B)	Axon Hillock	release neurotransmitters	2)	Α				
Ć)	Dendrites	convey signals from the dendrite	3)	D				
D)	Cell body	receive signals from other neurons	4) [–]					
E)	Axon	conduct signals toward the synaptic bulb	5) _	E				
6-10	Matching							
A)	Stretch reflexes	provide for automatic adjustment of skeletal muscle length	6) _	A				
B)	Myotatic reflexes	prevent unusually high tension in a muscle	7)_	B				
C)	Flexor reflexes	withdraw a limb from noxious stimuli	8)_	C				
		triggered by Golgi tendon organs	9)	B				
		triggered by muscle spindles	10) _	A				
11-15. Place the following events in order following stretch of a skeletal muscle								
A)	Muscle spindle stretches		11)	А				
B)	Action potential is initiated in the alpha motor neuron		12) [¯]					
Ć)	Neurotransmitter is released onto alpha motor neuron		13) [¯]					
D)	Action potential is initiated in the spindle sensory neuron			В				
EŚ	Acetylcholine is relea	ased onto skeletal (extrafusal) muscle cell	15) <u> </u>	E				
16-2	0 Matching							
A)	Medial motor pathwa	ay tectospinal tract	16)	A				
B)	Lateral motor pathwa	ay corticospinal tract	17)	B				
,	•	vestibulospinal tract	18)	Α				

involved in control of distal muscles and fine movement 19) ___B___

involved in control of proximal, head and trunk muscles and posture 20) ____

Fill in

21. A _motor _unit is an alpha motor neuron and the skeletal muscle cells it innervates

22. Gamma motor neurons adjust the _set point_ of muscle spindles.

23. The **_posterior__parietal__cortex_** is involved in control of body image and perception of spatial relations.

24. The _primary _motor _cortex is involved in control of distal muscles.

25. The _basal_ _nuclei_ are involved in the selection / initiation of willed movement.

Study Questions

- 1. Describe the organization of motor neurons and motor units.
- 2. Describe the function of and circuitry for stretch reflexes. Include the role of muscle spindles, alpha motor neurons, and gamma motor neurons.
- 3. Compare and contrast the organization and function of the medial and lateral motor pathways.
- Explain the role of the pre-central gyrus, pre-motor area, supplementary motor area, prefrontal cortex, posterior parietal cortex, thalamus and basal nuclei in the control of voluntary movement.