Appendix A: Endocrine Glands and Hormones

The major endocrine glands of the body and the hormones produced by these glands are summarized in Tables A.1 through A.12. Each table summarizes the stimulus, source and actions (including cellular mechanism of action) of each hormone produced by a particular gland. These tables are for reference.

- Table A.1. Posterior Pituitary and Actions of Posterior Pituitary hormones
- Table A.2. Hypothalamus and Actions of Hypothalamic Regulatory hormones
- Table A.3. Anterior Pituitary and Actions of Anterior Pituitary hormones
- Table A.4. Thyroid Gland and Actions of Thyroid Hormones
- Table A.5. Parathyroid Gland and Actions of Parathyroid Hormones
- Table A.6a. Adrenal Medulla and Actions of Adrenal Medullary Hormones
- Table A.6b. Actions of Alpha (α) and Beta (β) Adrenergic Receptor Activation
- Table A.7. Adrenal Cortex and Actions of Adrenal Cortical Hormones
- Table A.8. Pancreas and Actions of Pancreatic Hormones
- Table A.9. Kidney and Actions of Renal Hormones
- Table A.10. Renin Angiotensin Aldosterone
- Table A.11. Ovary and Actions of Ovarian Hormones
- Table A.12. Testes and Actions of Testicular Hormones

Stimulus	Source	Hormone	Action
physical stress (dehydration, hyperosmolarity, blood loss)	Hypothalamic axons in Posterior Pituitary	Vasopressin (water soluble)	V1a receptors act through G-protein coupled activation of phospholipase C and release of Ca ²⁺ from the endoplasmic reticulum constricts blood vessels V1b receptors act through G-protein coupled activation of phospholipase C and subsequent release of Ca ²⁺ from the endoplasmic reticulum stimulates corticotropin secretion from the anterior pituitary V2 receptors act through G-protein coupled activation of adenylyl cyclase and cyclic-AMP causes the insertion of aquaporin-2 channels into the luminal membrane of the cells lining the collecting duct of the kidney and thus increases reabsorption of water by kidney
childbirth, suckling, sexual activity	Hypothalamic axons in Posterior Pituitary	Oxytocin (water soluble	act through G-protein coupled activation of phospholipase C and release of Ca ²⁺ from the endoplasmic reticulum facilitates milk ejection from mammary glands stimulates uterine contraction alters sodium excretion by the kidney facilitates bonding and trust

Table A.1. Posterior Pituitary and Actions of Posterior Pituitary hormones

Stimulus	Source	Hormone	Action of Hypothalamic Regulatory Hormone
Stress and low metabolism	Hypothalamic Neurons	Thyrotropin Releasing Hormone (TRH) (water soluble)	act through G-protein coupled activation of phospholipase C and release of Ca from the endoplasmic reticulum, and activation of protein kinase C stimulates Thyroid Stimulating Hormone (TSH) by Anterior Pituitary Thyrotrophs
Stress and low metabolism	Hypothalamic Neurons	Corticotropin Releasing Hormone (CRH) (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP leading to the opening of voltage gated Ca channels stimulates Adrenocorticotropic Hormone (ACTH) by Anterior Pituitary Corticotrophs
Stress and low metabolism	Hypothalamic Neurons	Somatotropin Releasing Hormone (GHRH) (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP, and activation of the transcription factor CREB by protein kinase A stimulates Growth Hormone (GH) by Anterior Pituitary Somatotrophs
Elevated metabolism	Hypothalamic Neurons	Somatostatin (Somatotropin Inhibiting Hormone) (GHIH) (water soluble)	act through G-protein coupled <i>inhibition</i> of adenylyl cyclase and cyclic- AMP and reduction of calcium inhhibits Growth Hormone (GH) by Anterior Pituitary Somatotrophs

 Table A.2. Hypothalamus and Actions of Hypothalamic Regulatory hormones

Intrinsic pacemaker	Hypothalamic Neurons	Gonadotropin Releasing Hormone (GnRH) (water soluble)	act through G-protein coupled activation of phospholipase C and release of Ca from the endoplasmic reticulum, and activation of protein kinase C stimulates Follicle Stimulating Hormone (FSH) by Anterior Pituitary Gonadotrophs stimulates Luteinizing Hormone (LH) by Anterior Pituitary Gonadotrophs
Pregnancy and Suckling	Hypothalamic Neurons	Prolactin Releasing Hormone (PRH) (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP? stimulates prolactin (prolactin is also stimulated by TRH and Serotonin)
Intrinsic pacemaker	Hypothalamic Neurons	Dopamine (Prolactin Inhibiting Hormone) (PIH) (water soluble)	act through G-protein coupled <i>inhibition</i> of adenylyl cyclase and cyclic- AMP and reduction of calcium inhibits prolactin

Stimulus	Source	Hormone	Action of Anterior Pituitary Hormone
Thyrotropin Releasing Hormone (TRH)	Anterior Pituitary Thyrotrophs	Thyrotropin (Thyroid Stimulating Hormone) (TSH	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP
	Inylouopiis	(water soluble)	stimulates T3 and T4 production by <u>thyroid</u> follicles
Corticotropin Releasing Hormone (CRH)	Anterior Pituitary Corticotrophs	Corticotropin (Adrenocorticotropic Hormone) (ACTH)	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP
(CKR)		(water soluble)	stimulates cortisol production by <u>adrenal cortex</u>
	Anterior Pituitary Somatotrophs		act through receptor coupled activation of tyrosine kinase
		Somatotropin (Growth Hormone) (GH) (water soluble)	stimulates breakdown of fats to fatty acids (Lipolysis) in <u>Adipose tissue</u>
Somatotropin Releasing Hormone (GHRH) and Inhibiting Hormone			stimulates Insulin Like Growth Factor (IGF-1) production by <u>liver</u>
(GHIH) (Somatostatin)			acts directly on cells to stimulate protein synthesis in muscle enhance lipolysis depress the action of insulin on glucose uptake stimulate gluconeogenesis
			act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP
Gonadotropin Releasing Hormone (GnRH)	Anterior Pituitary Gonadotrophs	Follicle Stimulating Hormone (FSH) (water soluble)	stimulates follicle development and estrogen production by <u>ovary</u> in female;
			stimulates spermatogenesis by <u>testes</u> in male

Table A.3. Anterior Pituitary and Actions of Anterior Pituitary hormones

Gonadotropin Releasing Hormone (GnRH)	Anterior Pituitary Gonadotrophs	Luteinizing Hormone (LH) (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic- AMP stimulates ovulation and progesterone production by <u>ovary</u> in female; stimulates testosterone production by <u>testes</u> in male
Prolactin Releasing Hormone (PRH) and Inhibiting Hormone (PIH)(Dopamine)	Anterior Pituitary Prolactotrophs	Prolactin (PRL) (water soluble)	act through receptor coupled activation of tyrosine kinase stimulates milk production by <u>mammary glands;</u> stimulates reabsorption of electrolytes by <u>kidney</u>

Stimulus	Source	Hormone	Action
stimulated by Thyrotropin (TSH)	Thyroid follicles	Tetraiodothyronin (Thyroxin or T4) (lipid soluble) Triiodothyronin (T3) (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs increases Na ⁺ /K ⁺ -ATPase, mitochondrial, and respiratory enzymes stimulates oxygen and food consumption, carbohydrate absorption, and substrate use enhances response to epinephrine and norepinephrine (thermogenesis, lipolysis, glycogenolysis and gluconeogenesis) increases cardiac output, heart rate, ??direct or indirect?
stimulated by an increase in Extracellular Ca ⁺⁺	Thyroid Parafollicular ("C") cells	Calcitonin (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic-AMP inhibits osteoclasts and inhibits resorption of calcium from <u>bone</u> into plasma

Table A.4. Thyroid Gland and Actions of Thyroid Hormones

Table A.5. Parathyroid Gland and Actions of Parathyroid Hormones

Stimulus	Source	Hormone	Action
stimulated by a fall in Parathyroid Extracellular Chief cells Ca ⁺⁺			act through G-protein coupled activation of adenylyl cyclase and cyclic-AMP
			stimulates osteoclasts and the resorption of calcium and phosphate from <u>bone</u> into plasma
	•	Parathyroid hormone (water soluble)	stimulates reabsorption of calcium by the <u>kidney</u> into plasma
			increases excretion of phosphate by the <u>kidney</u> into the urine
			stimulates production of Calcitriol by kidney, liver, and intestine

Stimulus	Source /	Hormone	Action of Adrenal Medullary Hormones
Physical activity, physical stress, emotional stress	Chromaffin Cells (ganglionic neurons)	Epinephrine (water soluble) Norepinephrine (water soluble)	Varies depending on adrenergic receptors - α_1 , α_2 , β_1 , β_2 , β_3 (see below)

Table A.6a. Adrenal Medulla and Actions of Adrenal Medullary Hormones

Table A.6b. Actions of Alpha (α) and Beta (β) Adrenergic Receptor Activation

Hormone	Receptor	Action of Adrenal Medullary Hormones
Norepinephrine Epinephrine	a_1 receptors or a_2 postsynaptic receptors	act through G-protein coupled activation of phospholipase C and production of IP3 and DAG; release of Ca from the endoplasmic reticulum; activation of protein lipase C constrict blood vessels in abdominal organs, kidney, skin and genitals increase breakdown of glycogen to glucose (Glycogenolysis) in liver and skeletal muscle via α_1 stimulate glucagon secretion by pancreas via α_1
Norepinephrine Epinephrine	α_2 presynaptic and some α_2 non-synaptic receptors	act through G-protein coupled <i>inhibition</i> of adenylyl cyclase and cyclic-AMP; reduction of calcium decrease neurotransmitter release via presynaptic α_2 inhibit insulin secretion by pancreas via non-synaptic α_2
Epinephrine Norepinephrine	β 1 receptors	act through G-protein coupled activation of adenylyl cyclase, cyclic-AMP, and protein kinase A; increase of calcium increase heart rate and force of cardiac contraction stimulate glucagon secretion by pancreas stimulate renin secretion by kidney
Epinephrine Norepinephrine	β_2 receptors	act through G-protein coupled activation of adenylyl cyclase, cyclic-AMP, and protein kinase A; activate calcium pumps; modulate various enzymes dilate airways and dilate blood vessels in skeletal muscle increase breakdown of glycogen to glucose (Glycogenolysis) in liver and skeletal muscle increase production of glucose from fatty acids and amino acids (Gluconeogenesis) in liver
Epinephrine Norepinephrine	β 3 receptors	act through G-protein coupled activation of adenylyl cyclase, cyclic-AMP, and protein kinase A; modulate various enzymes increase breakdown of lipids (lipolysis) and release of fatty acids in adipose tissue

Stimulus	Source	Hormone	Action
stimulated by Angiotensin II, III and by elevated plasma K ⁺	Zona glomerulosa	Aldosterone (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs for Na ⁺ /K ⁺ -ATPase stimulates the reabsorption of sodium and secretion of potassium from the distal renal tubules of the kidney into the plasma
stimulated by adrenocorticotropin (ACTH)	Zona fasciculata	Cortisol (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs breaks down protein and releases amino acids from <u>Muscle</u> breaks down fat (lipolysis) and releases free fatty acids from <u>Adipose tissue</u> stimulates the conversion of amino acids (and glycerol) to glucose (Gluconeogenesis) in the <u>Liver</u> inhibits cellular uptake of glucose inhibits inflammation and immune responses helps maintain blood volume by decreasing the permeability of the vascular epithelium
stimulated, in part, by adrenocorticotropin (ACTH)	Zona reticularis	Androstenedione (precursor to Testosterone and Estradiol) (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs stimulates muscle growth increases bone density may increase libido provide 50% of androgens in women

Table A.7. Adrenal Cortex and Actions of Adrenal Cortical Hormones

Stimulus	Source	Hormone	Action of Pancreatic Hormone
stimulated by low blood glucose and by epinephrine; inhibited by high blood glucose and Beta cell activity	pancreatic Alpha cells	Glucagon (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic-AMP increase breakdown of glycogen to glucose (Glycogenolysis) in <u>Live</u> r increase production of glucose (Gluconeogenesis) from amino acids in <u>Liver</u> increase production of ketones (ketogenesis) from fatty acids in <u>Liver</u>
stimulated by high blood glucose; inhibited by epinephrine	pancreatic Beta cells	Insulin (water soluble)	act through a membrane tyrosine kinase receptor that phosphorylates several proteins that act as insulin receptor substrates stimulates transport of glucose into cells in <u>Muscle</u> and <u>Adipose tissue</u> and in <u>Liver</u> stimulates glycogen formation from glucose (Glycogenesis) in <u>Muscle</u> and <u>Liver</u> facilitates fat storage by stimulating transport of fatty acid into and inhibiting transport of fatty acids out of <u>Adipose</u> cells facilitates protein storage by stimulating transport of amino acid into and inhibiting transport of amino acids out of <u>Muscle</u> cells

 Table A.8. Pancreas and Actions of Pancreatic Hormones

Stimulus	Cells / Source	Hormone	Action
stimulated by norepinephrine (NE) via β-1	JG cells	renin (water soluble)	enzymatically converts converts angiotensinogen to angiotensin I
stimulated by a fall in erythrocytes	kidney	Erythropoietin (water soluble)	act through coupled "non-receptor protein tyrosine kinases." accelerates the differentiation of stem cells of the bone marrow into erythrocytes
stimulated by Parathyroid hormone (stimulated by a fall in extracellular Ca^{2+} or P_i)	kidney	Calcitriol (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and transcription of mRNAs stimulates calcium and phosphate absorption from the <u>intestinal tract</u> stimulates resorption of calcium and phosphate from <u>bone</u> into plasma may decrease excretion of calcium and phosphate by the <u>kidney</u> into the urine

Table A.9. Kidney and Actions of Renal Hormones

Stimulus	Cells / Source	Enzyme / Hormone	Action
stimulated by norepinephrine (NE) via β-1	JG cells	renin (water soluble)	enzymatically converts angiotensinogen to angiotensin I
	blood	Converting enzyme (water soluble)	enzymatically converts angiotensin I to angiotensin II
	blood Angiotensin II (water soluble)		AT1 receptors act through G-protein coupled activation of phospholipase C and subsequent release of Ca ²⁺ from the endoplasmic reticulum
			constricts blood vessels stimulates Aldosterone production by the adrenal cortex and vasopressin secretion
			by the posterior pituitary stimulates thirst
			AT2 receptors act through G-protein coupled activation of Mitogen Activated Protein kinase. ??
			inhibit cell growth
			modulate apoptosis and cellular differentiation
		dilate blood vessels	

Table A.10. Renin – Angiotensin – Aldosterone

Stimulus	Cells / Source	Hormone	Action
stimulated by follicle stimulating hormone (FSH)	Granulosa cells surrounding the oocyte	Estradiol (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs
			increases the endometrial thickness (3 to 5 fold)
			triggers the ovulatory surge of LH and FSH
			inhibits the GnRH neurons of the hypothalamus and stimulates the LH gonadotrophs of the pituitary
			increase receptors for Estradiol, LH and FSH
stimulated by luteinizing hormone (LH)	Theca cells of developing follicle	Androstenedione and Testosterone (lipid soluble)	serve as precursors for synthesis of Estradiol
stimulated by LH and FSH	Luteal cells of the corpus luteum	Progesterone and Estradiol (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression
			Progesterone inhibits the rapid endometrial growth and stimulates growth of glands and elongation of arteries
			Progesterone inhibits the GnRH neurons in the hypothalamus
stimulated by LH and FSH	Luteal cells of the corpus luteum	Relaxin (water soluble)	act through G-protein coupled activation of adenylyl cyclase and cyclic-AMP (at least in part)
			relaxes the cervix and softens cartilage and fibrous connective tissue
			stimulates VEGF in endometrium

 Table A.11. Ovary and Actions of Ovarian Hormones

Stimulus	Cells / Source	Hormone	Action
stimulated by follicle stimulating hormone (FSH)	Sertoli cells within the Seminiferous tubules	Estradiol (lipid soluble)	FSH stimulates production of androgen binding globulin
stimulated by follicle stimulating hormone (FSH)	Sertoli cells	Inhibin (water soluble)	Inhibits FSH gonadotrophs in pituitary
stimulated by luteinizing hormone (LH)	Leydig cells between the Seminiferous tubules	Testosterone (lipid soluble)	act through cytoplasmic and nuclear receptors and changes in gene expression and the transcription of mRNAs Essential in high local concentration for spermatogenesis
			Inhibits GnRH secretion by hypothalamic neurons required for pubertal masculinization to occur increases muscle mass and body growth
			close Epiphyseal growth plate

 Table A.12. Testes and Actions of Testicular Hormones