Neurotransmitter Systems

Introduction

The dominant messengers between neurons are the neurotransmitters. A neurotransmitter system is defined by a specific neurotransmitter.

- Includes the molecular machinery responsible for neurotransmitter synthesis, vesicular packaging, reuptake and degradation, and transmitter action.
- Neurotransmitter systems are usually named after the neurotransmitter ending with the suffix *-ergic*.

Studying Neurotransmitter Systems

In order to be a neurotransmitter, the molecule must:

- Be synthesized and stored in the presynaptic neuron.
- Be released by the presynaptic neuron upon stimulation.
- Produce a response in the postsynaptic cell when applied experimentally.

Localization

- Immunocytochemistry
 - Labeled antibodies directed toward specific neurotransmitters
- In Situ Hybridization
 - Labeled complementary mRNA directed toward specific neurotransmitter transcripts

Receptors

•

- Generally, no two neurotransmitters bind to the same receptor.
 - However, one neurotransmitter can bind to many different receptors.
 - Neuropharmacological Analysis of receptors.
 - Selective drugs reveal subtypes of receptors
- Ligand Binding Methods
 - Many drugs can be used to analyze receptors before a neurotransmitter is identified.
- Molecular Analysis
 - Modern methods for analyzing protein molecules led to the recognition of neurotransmitter-gated ion channels and G-protein coupled receptors.
 - Many different polypeptides serve as subunits of functional receptors.

Neurotransmitter Chemistry

- Most neurons seem to release a single amino acid or amine neurotransmitter.
- Many peptide containing neurons release a peptide <u>and</u> an amino acid <u>or</u> amine.

Cholinergic Neurons

Acetylcholine

- Acetylcholine (Ach) is the neurotransmitter of skeletal neuromuscular junctions and is synthesized in all the motor neurons of the spinal cord and brainstem.
- Choline acetyltransferase (ChAT) is manufactured in the cell body and transported to the axon terminal.
- Choline is taken up by axon terminals by a Na⁺ linked choline co-transporter.
- The acetyl of Acetyl CoA is joined to choline by ChAT to form acetylcholine (Ach)

- Availability of choline is a rate limiting step.
- Acetylcholine (Ach) is then moved into a vesicle by an Ach transporter.

Catecholaminergic Neurons

Catecholamines

- The catecholaimes include dopamine, norepinephrine, and epinephrine which are neurotransmitters found in regions of the nervous system involved in regulation of movement, mood, attention, and visceral function.
- Catecholamines are synthesized from tyrosine:

- The activity of tyrosine hydroxylase (TH) is the rate limiting step.
- Dopamine β hydroxylase (DBH) is found in synaptic vesicles.
- Phentolamine N-methyltransferase (PNMT) is found in the cytosol.
- Action of catecholamines is terminated by selective reuptake of neurotransmitter back into the axon terminal by Na⁺ linked co-transporters. (Amphetamines and cocaine block the reuptake of catecholamines.)
 - Once taken up, catecholamines may be reloaded into synaptic vesicles or destroyed by monoamine oxidase (MAO).

Serotonergic Neurons

Serotonin

- Serotonin plays a role in brain systems that regulate mood, emotional behavior, and sleep.
- Serotonin is synthesized from tryptophan

Tryptophan hydroxylase

Tryptophan	>	5-Hydroxytryptophan
	5-Hydroxytryptophan decarboxylase	
5-Hydroxytryptophan		5-Hydroxytryptamine

- Synthesis of serotonin (5-HT) is limited by the availability of tryptophan. (Grains, meat, and dairy products are rich in tryptophan.)
- Serotonin is removed from the synaptic cleft by a specific reuptake transporter.

Amino Acidergic Neurons

Amino Acids

- Glutamate, glycine, and GABA are the most common neurotransmitters found in the central nervous system.
 - Glutamate is the major excitatory neurotransmitter in the CNS.
 - GABA is the major inhibitory neurotransmitter in the CNS.
- Glutamate and glycine are amino acids, but can be synthesized from glucose.
- In glutaminergic neurons, a glutamate transporter concentrates glutamate in the synaptic vesicles.
- GABA is synthesized from glutamate by glutamate decarboxylase

Glutamate decarboxylase

Glutamate ------> GABA

- Action of the amino acids is terminated by selective reuptake of neurotransmitter back into the axon terminal by Na⁺ linked co-transporters.
 - GABA is inactivated by GABA transaminase.

Purinergic Neurons

ATP

• ATP is likely a neurotransmitter that binds to purinergic receptors.

Cannabinergic Neurons

Endocannabinoids

- Endocannabinoids are retrograde lipid soluble messengers released from postsynaptic neurons to act on axon terminals.
- Bind to CB1 receptors and reduce opening of Ca^{2+} channels.

Neurotransmitter Gated Channels

A neurotransmitter gated channel is a protein that functions both as a channel and as a receptor, and is only about 11 nm long.

- Most channels are constructed as a pentamer of five protein subunits arranged to form a single pore.
 - The nicotinic acetylcholine receptor is representative of this structure.
- Some channels are constructed as a tetramer of four protein subunits arranged to form a single pore.
 - The glutamate gated channels are representative of this structure.

Amino Acid-Gated Channels

Glutamate-gated channels can have AMPA, NMDA, or Kainate receptors

Glutamate Gated AMPA Receptor Channels

- AMPA receptor channels are permeable to both Na⁺ and K⁺, and are not permeable to Ca²⁺.
- At normal negative membrane potential the net effect is entry of Na⁺ and depolarization.

Glutamate Gated NMDA Receptor Channels

- NMDA receptor channels are permeable to Ca^{2+} , Na^+ , and K^+ .
- However, inward ionic current is voltage dependent.
 - At normal negative membrane potential the channel becomes clogged with Mg^{2+} and prevents other ions from passing.
 - When the membrane is depolarized, (which usually follows activation of AMPA receptors), Mg^{2+} pops out of the pore allowing Ca^{2+} and Na^+ to enter the cell.
 - \circ Postsynaptically Ca²⁺ can activate many enzymes, regulate the opening of a variety of channels, and affect gene expression.
- Ca²⁺ entry through NMDA Glutamate gated channels may cause the changes that lead to long term memory.
- AMPA receptor channels and NMDA receptor channels coexist at many synapses

GABA Gated GABA_A Receptor Channels

- GABA_A receptor channels are permeable to Cl⁻.
- GABA_A receptor channels also have binding sites for benzodiazepines, barbiturates, ethanol, and neurosteroids.
 - $\circ~$ These substances enhance the action of GABA and increase the frequency or duration of CI $^-$ channel opening.

Glycine Gated Channels

• Glycine receptor channels are also permeable to Cl⁻.

G-Protein Coupled Receptors

G-protein coupled receptors (GPCRs) are a single polypeptide containing 7 membrane spanning alpha helices.

- Two extracellular loops form the neurotransmitter binding site.
- Two intracellular loops bind to and activate G-proteins.
- More than 100 GPCRs have been described.

G-Proteins

- There are so named because they bind to guanosine triphosphate (GTP)
 - \circ $\;$ There are at least 20 types of G-proteins.
- Each G-protein has three subunits: α (alpha), β (beta), and γ (gamma).
 - \circ In the resting state a GDP is bound to the Ga and the whole complex floats on the inner surface of the cell membrane.
 - If GDP bound G-protein bumps into the proper type of receptor and if the receptor has a neurotransmitter bound to it, the G-protein releases GDP and exchanges it for GTP.
 - $\circ~$ The GTP bound G-protein splits into 2 parts: the Ga+GTP and the Gby.
 - $\circ~$ Ga is an enzyme that eventually breaks down GTP to GDP.
 - $\circ~$ The Ga+GTP and the Gby influence effector proteins.
 - The G α +GDP and the G $\beta\gamma$ eventually come back together.

G-Protein Coupled Effector Systems

Shortcut Pathway – G-Protein to Ion Channel

- Muscarinic-2 receptor for acetylcholine (Ach)
 - \circ G $\beta\gamma$ subunit migrates laterally along the membrane until they bind an appropriate K⁺ channel and open it.
- GABA_B for GABA
 - $\circ~G\beta\gamma$ subunit migrates laterally along the membrane until they bind an appropriate K^{+} channel and open it.

Second Messenger Cascade G-Protein to Enzyme(s)

- Beta-1 receptor for norepinephrine (NE)
 - Activates stimulatory G-protein (Gs).
 - \circ Gsa subunit + GTP migrates laterally along the membrane until meeting with and activating adenylyl cyclase.
 - Adenylyl cyclase converts ATP to cAMP.
 - cAMP activates protein kinase A.
 - \circ Protein kinases phosphorylate proteins and changes their shape; here they phosphorylate and open Na⁺ and Ca²⁺ channels.
- Alpha-2 receptor for norepinephrine (NE)
 - Activates inhibitory G-protein (Gi).
 - \circ Gia subunit + GTP migrate laterally along the membrane until meeting with and inhibiting adenylyl cyclase.
 - No adenylyl cyclase to convert ATP to cAMP.
 - No cAMP to activate protein kinase A.
 - Alpha-1 receptor for norepinephrine (NE)
 - Activates G-protein (G).
 - \circ Ga subunit + GTP migrate laterally along the membrane until meeting with and activating phospholipase C (PLC).
 - PLC splits a membrane phospholipid phosphatidylinositol (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3).
 - $\circ~$ DAG (lipid soluble) activates protein kinase C which phosphorylates and closes $K^{\scriptscriptstyle +}$ channels.
 - IP3 (water soluble) diffuses into cytosol and bins to IP3 gated Ca^{2+} channels in the smooth ER and other organelles. These organelles store Ca^{2+} and when the Ca^{2+} channels open Ca^{2+} diffuses into the cytosol.